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T2=IAR' BLAST Z'YFT3:
THZ ZMXTS CF IMPACT C( MICE, RATS,

GUI.A PIGS AND RABBITS

FORWORD

The present report, though related to blast and shock biology,
deals with the results of exposure of four species of animals to
L=psct. Extrapolation of the mortality data to the 70 kg animal
and a coparlson of tho resultX with relevant inforzation in the
literature dealing with hucuan response to dynamic accelerative or
decelerative loading Is presented.

The results are li=ited to situations In vhIch impact with a
hard surface occurs and therefore to circumstances wherein only
the animals own tissues arm active In absorbing the energy of
motisc, I.e., the tim. and distance ower which energy d!ssipation
occurs is a-.I.*L, a fact which tends to maximize the impact load.

These findings are applicable to many situations in which injury
may occur either from thw Impact of blunt objects striking a
blological target or from a moving target striking a solid object.

M~We
1 ~ S-tay reyIrvmeatsr a segZeit Of~ exe Uta5io WhiXch

has been trdr way PI=ce 1952 almed at clarif$-ng the biological
response follo ing exposure to blast phenonena includin overpressures,
winds, owing debris, and ground shock.



ABSTRACT

A total of 455 mice, rats, guinea pigs and rabbits were subjected to

impact at velocities ranging between Z5 ft/sec and 5L ft/sec. The desired

velocities were generated by allowing the anir als to free-fall from various

heights to a flat concrete pad. The ventral surface of each animal was the

area of impact.

r
Probit analyses of the 24-hr mortality data yielded LD50 impact velo-

cities with 95 per cant confidence limits as follows: mouse, 39.4 (37.4 -

4Z.0) ft/sec; rat, 43.5 (4Z.0 - 44.8) ft/sec; guinea pig, 31.0 (30.0 - 31.9)
I--.

ft/sec; and rabbit, 31.7 (30.Z - 33.3) ft/sec. The LD0 figures for the

mouse and rat were significantly higher, statistically, than those for the

guinea pig and rabbit.

The small spread in the LD 50 values suggested little variation in the

tolerance of biological systems to impact. Further, the steepness of the

mortality curves indicated a narrow survival range to impact..

Extrapolation of the experimental data to the 70 kg animal yielded a

predicted LD so impact velocity of .Z6 ft/sec (18 rmph). Literature relevant

to the human case was reviewed and the tentative applicability of the pre-

dicted figures to adult man was discussed.

1
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1. A total of 455 animals including 113 mice, 178 rats, 111 gidnea

pigs and 53 rabbits were subjected to impact at velocities ranging between

Z5 ft/sec and 51 ft/sec.

Z. The desired impact velocities were generated by allowing the

animals to free-fall from various heights to a flat concrete pad. The

ventral surface of each animal was the area of impact.

3. The velocities at impact were determined from equations that were

empirically derived from high speed photographic records of the animals at

impact.

4. Probit analyses of the Z4-hr mortality data yielded LD5 values

with 95 per cent confidence limits as follows: mouse, 39.4 ft!sec (37.4 -

4Z.0); rat, 43.5 ft/sec (4Z.0 - 44.8); guinea pig. 31.0 ft/sec (30.0 - 31.9);

and rabbit, 31.7 ft/sec (30.Z - 33.3).

5. Of the ZOO animals killed by impact, 149 (75 per cent) died within

ZO mii and 90 per cent within one hour. Only 10 per cent of the deaths

occurred between the Z-hr ind Z4-hr period. The general trend was for

the larger species to have the longzer survival times.

6. From an unterspecies extrapolation the LD s 0 impact velocity for

a 70 kg aninal was calculated to be Z6 ft/sec (18 mph).

7. A probit mortality curve was calculated for a 70 kg animal to pre-

dict threshold conditions for lethality which was ZI it/sec (14 mph).

8. The results from the present study were discussed revelant to the

in-or-r.ation available in the literature oa the effects of ground shock on

personnel in underg-ound structures, deck heave, translation caused by air

blast. a-"omobile accidents, falls, and related decelerative phenonena.

9. The .--inimu-n innpact velocity required for skull fracture was

p-ointed ou-'t to be =ear 13.5 ft/sec (9.2 nph). (Gurdjiaa et al.)

10. The "iviil velocit-;" threshold for fr-acture oi the heel bcze of

. -sects bet-een It a:d 1 ft/sec (Black et al.; Draezer et al.).

3
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in a seated position, was r-eported to be about 10 Wilec (Sweaz-in-,en et al.).

12Z. Human fatalities in automrobile statistics showed 50 per cent. mor-

tality at vehicular speeds near 33.3 ft/sec (Z3 mrph) which was in, fair agree-

ment. with the 50 per cent impact velocity (26 ftfsec) obtained in the present

study for an aninial. of comparable body weight (frorn Delfaven).

13. It was tentatively concluded that 10 ft/sec (7 mnph) was the "on-the-

average safe" impact for adult humrans.
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LNTRODUCTION

To serve the purposes of study and presentation, the biological effects

of air blast have been arbitrarily divided into several categories, tir.e most

important of which are primary, secondary, and tertiary effects ! - 4 Prinar-

damage is that associated with variations in environmental pressure per se.

Injuries generally occur where the variation in tissue density is the greatest,

and in particular, involve the air-containing organs; e.g., the sinuses, ears,

lungs, and gastrointestinal tract. When the lungs are significantly injured,

widespread arterial air emboli ensue and frequently produce rapid mortality

when blood flow in coronary and cerebral vessels is embarrassed.

Secondary effects include those injuries resulting from the impact of

penetrating or nonpenetrating missies energized by blast pressures, winds,

ground shock, and gravity. A wide variety of injuries is seen ranging from

slight lacerations to penetrating and perforating lesions due to flying debris,

including fragments of glass and other frangible materials. Also, massive.

crushing injuries can occur from the collapse of inhabited structures of

various types.

Tertiary effects encompass injuries that occur as a consequence of actual

displacement of a biological target by winds that accompany the propagation of

the pressure pulse. Though damage may ensue during the accelerative phase

of movement because of differential velocities imparted to various portions of

the body, traur a is likely to be more prevalent and severe during dceleration,

particularly if impact with a hard surface occurs. Injurie. in t:C-is caiegory

may be somewhat sirmnilar to those renetioned above for secondary effects and

n-ay frequently bear a resemblance to those observed in vi%;rns of auton-ohile
9.10 11 rh ' 13accidents, fals, and airplane crashes 1 e.g., branions, lacera-

tions, contusions, fractures, and rupture of, and darage to, the intcrnal

organs, including the heart, !:i ngs, liver, spleen, brain, and spinal cord.

Proper assessment of the turtiary blast hzzard itiquire.- knowlk.dge ir at

least two areas; namely (a) information concerning velocities attained by nblects

the size and shape of man in relation to the physical parameters of the blast



T'he fo..er has been studied by Taborelli et aL.1 4 in ful-scale nuclear tests,
15

and Bowen and co-workers have for-mulated a rmatherr.atical model for

predicting the velocity-history of objects as large as man when energized by

blast pres3ures and winds from modern high-yield explosions. Relatively

little, however, is known quantitatively about the biology of decelerative

impact referable either to humans or other mammals under circumstances

wherein the stopping time and distance - other things being equal - are p-i-

n'ary functions of the organism itself and not modified by other factors, sucn

as deformation of vehicular structures, indentations in "soft" surfaces, and

other events serving to depress the peak G load that develops during deceler-

ation.

Because of this fact a relevant exploratory investigation usin-$ experi-

mental animals was planned, carried out and the data assessed as one possible

means of gaining some quantitative insi.ght Lito the tolerance of rr an to impact.

The following material will first describe the experiments performed; second,

detail the observed "dose "-response relationship between velocity at impact

and lethality for mice, rats, guinea pigs, and rabbits striking a flat concrete

surface in the ventral position; third., set forth an interspecies comparison

noting the association between average body weight and impact velocity respon-

sible for mortality in. each speci4es; and last, briefly discuss the in.plications

of the data. with regard to extrapolation to the human case.

METHODS

1. Generation of Inact Veloci=4es

The necessary range of velocities was obtained by dropping ani:-mals

from different heights onto a flat concrete slab. Animrzals were released, one

at a tim:e, from a snall bo. hoisted by a cable-pulley syste. attached to a

54 ft pole. The bottom of the box was opened by mr.eans of a solenoid-operated

mec':ans. At lower heights some of the animals were released by hand.

3-ias were in the prone positioa w1hen dropped and wher they struck the

concrete pad. The height of drop was measured from the ventral surface of

tue a-imal's trn--k to the surface oi the impact area.

&



In all, a total of 455 animals were dropped in th-is study; their mean

body weights, standard deviation, and the weight ranges are given ini Table

1. There were 113 mice and 178 rats dropped at intervals between 15 ft and

54 ft; IL guinea pigs from heights between 10 ft and 24 ft; and 53 rabbits

between IZ ft and 23 ft.

The animals killed by impact were autopsied# as soon after death as

possible, while survivors were sacrificed and autopsied after Z4 hrs. The

mortality figures reported subsequently, therefore, represent lethality up

to Z4 hrs.

3. Deterr.ination of Impact Velocities

Initially, impact velocities were determined from the timing marks on

a Fastax carnera film record taken of the animals just before impact. Velo-

cities so determined for animals dropped from several different heights showed

that the four species did not attain the same velocity for a given height of fall.

Since it was impractical to takc motion pictures of all the animals at impact,

it was necessary to derive equations that would allow the calculation of the

impact velocities.

Details of the experimental procedure and the derivation of the equations

are reported elsew.ere.' 0 Briefly, the procedure was as follows:

An acceleration coefficient, alpha (a), was experimentally deterrined

for freely falling objects including the four species of animals concerned here.

-Alpha was defined as t.e area presented to t-e wind stream. times tbhe object's

dra; coefficient divided by its mass. The foliovrin_ empirical relation between

al: and mass was obtained for srnall animal species:

log a=: 0.01153 - 0.32400 lo,. (M)

w:, -re

c = acceleration coefflcient in ft:/Ia

m = a'ma. ls mnass in --trams

The .-ross p.:-olo.y observed in t,e anr.im-ils subjected to impact will
be ---e subject of a separ.te report.

9



Table I

ANAALS USED LN THIS STUDY

Mean Standard-
Species Number body weight Rangdeviation

Mice 113 19.8 g (16-2z8) 3.8 g

Rats 178 185 g (150-Z50) Z-9 g

Guinea pigs 111 650 g (480-811) 16Z g

Rabbits 53 Z.43 kg (1.6Z-3.63) 0.47 kg

Total 455

3L



Th-e following reeion-ip for i;o.npac 7elocity Wa3 also experiz.-enta1y

de r.,Ved:

V (ZgH) I1Z (I-e' f /H2 ,  (a)
-he I

VIcre 
7

V = inpact elocity

g = acceleration of gravity

H height of fall

p= air density

a= acceleration coefficient

Thus, the alpha for each group of ain'als dropped at the different heights,

as reported in Tables Z through 5, was calculated by substituting the appro-

priate mean mass (body weight) into equation (1). Solving equation (Z) with

the prjper values of c, g. H, and p yielded impact velocities for each group.

The values so obtained for ir.pact velocities were carefully checked in indi-

* vidual animals for each snecies and were consistent -ith the eata obtained

using high speed photography.

RESULTS

1. Mortality

The Z4-hr mortali"ty data observed for mice, rats, guinea pig7s, and

rabbits are presented in Tables Z, 3, 4 and 5, respectively. Each table gives

the rnortality associated wita the height of the fall and the computed impact

velocity over the range in letihalit from near zero to about 100 per cent for

eacH species. Thus, th:e e-pirical data establishes a "dose"-response re-

lationsh ip for eacch species of a -nial.

To farther assess t-is relationship an apopropriate program for a

Bendix G-15 Computer was prepared to aopply -e probit ar.alsis of Finey 1

to the data presented in Tables Z th.routh 5. T-.e probit transiorm.-atioa rela:es

th-e Dercent mortality in probt uniits to :'-e lo of t-.e "dose' -th-e "dose"t here

being the velocity at impact-and allows a si.rnoid r-espose c-rve to be ex-

pressed as a linear rezression eqiatio-. of *:the ;eneral form:

11



Table 2

THE RELATION BETWEEN

NIOUSE MORTALITY AND IPACT VELOCITY

Height of drop Impact velocity Number dead over Mortality

ft ft/ sec the number dropped f

15 Z8.4 0/10 0

18 30.8 1/10 10

z1 32.6 3/10 30

28 36.3 6/ 0 30

3Z 38.5 6/22 Z7

36 39.1 3/11 27

4? 41.3 7/10 70

43 43.0 8/10 80

54 45.3 10/10 100

Total 44/113

computed LDs5 0 = 39.4 ft/sec



Table 3

W41 RELATION BETWEEN

RAT MORTALITY AND IMPACT VELOCITY

Height of drop Impact velocity Number dead over Mortality

ft ftlsec the number dropped

15 Z9.8 0/10 0

18 3Z.3 0/10 0

2z 34.6 0/10 0

24 36.8 1/10 10

7 38.7 2/10 zo

30 40.4 3/10 30

33 4740 6/10 60

36 43.6 2/10 20

39 45.3 9/20 45

42 46.5 23/26 88

'5 47.5 rsi1o so

48 48.6 8/10 80

51 49.8 8/10 80

54 50.9 20/22 91

Total 90/178

computed LD50 = 43.5 ft/sec

13



Table 4

THE RELATION BETWEEIN

GUINEA FIG MORTALITY AND IMPACT VELOCITY

Height of drop Impact velocity Number dead over Mortality
ft ft/sec the number dropped

10 24.8 0110 0

12 Z7.0 Z/10 20

13 28.1 0/4 0

14 z9. 1 1/10 10

15 30.0 4/10 40

16 30.9 6/IZ 50

17 31.9 5/10 50

18 3Z.7 8/10 80

19 33.6 8/11 73

20 34.4 9/10 90

21 35.1 10/10 100

24 37.Z 4i4 i00

Total 57/111

computed LD50 - 31.0 ft/sec
. . .. . ... _ 0



Table 5

THE RELATION BETWEEN

RABBIT MORTALITY AND IMPACT VELOCITY

Height of drop Impact velocity Number dead over Mortality
ft ftlsec the number dropped

12 ZT.4 0/10 0

14 Z9. 5 Z/10 20

16 31.5 5/10 50

18 33.3 7/10 70

ZO 35.1 9/10 90 

z. 36.7 1/1 100

24 38.Z 1/1 100

28 41. Z 1/1 100

Total Z6/53

computed LD 5 0 = 31.7 ft/seci

15



Y a+blogX

where

Y = percent mortality in probit units

X velocity of impact in ft/sec

a constant for the intercept

b slope constant for the regression line

The results of the probit analyses are presented graphically for

each species in Figs. I through 4. Each figure notes the regression equa-

tion appropriate to the species of animal and shows the regression line,

the grouped individual data points, the 95 per cent confidence limits of the

information and the LD 5 0 "velocity-dose" figure in ft/sec which is that impact

velocity associated with 50 per cent mortality obtained by substituting 5 (the

probit unit equal to 50 per cent mortality) for Y and solving the regression

equation for X.

Similarly, impact velocity values associated statistically with any

percent mortality may be calculated, as was done for example, for 10 and

90 per cent mortality as noted in Table 6 comparing the results for the four

species of animals employed. The table also presents the values for the

regression equation intercepts and slope constants, the standard error of the

slope constant and the 95 per cent confidence limits of the impact-velocity

fiures.

The solid lines in Fig. 5 set forth a graphic comparison of data

noted in Table 6. As far as the impact velocity figures associated with 50

per cent mortality are concerned, it can be said that the LD50 value of

31.0 ft/sec for the guinea pig was not significantly different from that for

the rabbit of 31.7 ft/sec. Those for the mouse (39.4 ft/sec) and rat (43.5

ft/sec). however, were statistically different from one another at the 95 per

cent confidence limit; likewise, the LD0's for the guinea pig and rabbit were

si;niticantly below those for either the mouse or the rat at the 95 per cent

confidence limit.

Concerning the variability in the slope constants. it nay- be stated

i6
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that a test for parallelism usi g. all the data in cated the resu! s cold not

be fited to a common slope wit-- aay statistical reliabilivy. However, at

the 95 per cent confidence limit, as might be expected from a visual Lnspec-

tion of Fig. 5, the regression curves for the mouse and rat were essentially

parallel; so also were those for the guinea pig and the rabbit. Not so evident

from visual inspection was the fact that the curves for the rat and guinea pig,

and the rat and th-e rabbit could be regarded statistically as para"lel. This

is not the case for the mouse-rabbit and t:h.e mouse-guinea pig relations'hips

which showed no parallelism statistically in the regression lines at the 95

per cent confidence limit.

2. Time of Death

Two hundred animals were lethally injured by impact. The nuzmber of

animals succumbing in various time intervals - 0-5, 6-10, Il-ZO, 21-60,

61-120 minutes, and IZI minutes to Z4 hours - is shown in. Table 7, along

with total percentage and accumulative percentage figures for the selected

periods of time. Table 8 presents the percentage and accumulative percentage

data for each species of anLmal.

The combined results given in Table 7 show that death occurred quite

rapidly; e.g., 149 of the animals, or 74.5 per cent, were dead within Z0 mma

and 179. or 89.5 per cent, within one hour. Thus, only Zi of the ZO fatally

injured animals lived longer than one hour and these - about 10 per cent of

the total- died within 24 hr after L-npact; 5 between th-e first and second hour

and 16 between the second and twenty-fourtht hour.

The species-segregated data in Table 8 sh-ow other findings of interest.

First, it is apparent t-at tie nice died with-in an extraordinarily s'h=ort period;

i.e., 52, 86, and 100 per cent were dead within 5, 10, and ZO min. respec-

tivelv. Second, mortally- injured rabbits su-vi-ved longer than the other species.

Third, the times of death for g-inea pigs and rats fell between those for rice

and rabbits. Fourth, at the hi7',er accumnulative percentages of let:-.ality -

above 90 per cent for all species - there was a tendency for time of death to

be related to animal size; i.e.. tie larger the animatl the longer t.e survival

pe .)od.

23



Table 7

TLLE OF DEATH AND

NUMBER OF ANLMALS MORTALLY WOUNDED BY LIMPACT AND
THEJ TOTAL D'CILDENCE OF MORTALITY AS A FUNCTION OF TLME

Species umber oi animals dying in indicated time intervals
of 0-5 6-1O 11-20 ZI'-b 61-1LO I21 min Totas

animal nnfa min min mn min -24 hrs

Mouse 23 15 6 0 0 0 44

Rat ZZ 14 12 16 2 7 73

Guinea pig 30 6 6 9 1 5 57

Rabbit 4 4 7 5 2 4 26

Total number 79 39 31 30 5 16 zoo

Total per cent 39.5 19.5 15.5 15 2.5 8.0 100

Accumulati e No. 79 118 149 179 184 zoo

Accumulative % 39.5 59 74.5 89.5 92.0 100

There were 17 rats not included in the total because time of death was
not recorded.



Table 8

PERCENTAGE AND ACCUMULATIVE PERCENTAGE OF LETHALLY

WOUNDED ANIMALS AS A FUNCTION OF TIME AFTER LMPACT

Percentage and Accumulative Percentage of Lethally
Wounded Animals

Mice Rats Guinea pigs Rabbits
Time of death ' Accurn. %f. Accurn. 5 Accum. 4Y. Accurr.

0-5 min 5Z.3 5Z.3 30.1 30. 1 5Z. 6 5Z.6 15.4 15.4

6-10 min 34.1 86.4 19. Z 49.3 10.5 63.1 15.4 30.8

Il-ZOmin 13.6 100 16.4 65.7 10.5 73.6 Z6.9 57.7

ZI- 6 Omin Z1.9 87.6 15.8 89.4 19.Z 76.9

61-1ZO min Z.8 90.4 1.9 91.3 7.7 84.6

l1 Zmin- Z4 hrs 9.6 100 8.7 100 15.4 100

2.5



To emphasize these points Fig. 6 was prepared and shows the

accumuative percent of animals Mortally woured, as given in Table 8,

as a function of time of deata for each species separately. Because ti.e

number of ani-.as surviving in the lo nger time periods was small and

because of the wide variability among species, no detailed statistical

assessment of the time of death data w-as undertaken. However, the early

time to death is quite clear and impressive.

3. Interspecies Relationships and Extrapolation of Data

a. Impact velocity and 50 per cent mortality

The interspecies relations'ip between the impact velocity asso-

dated with 50 per cent mortality in rice, rats, guinea pigs, and rabbits

and the average weight of each species of animal was examined using the

method of least squares. The results, plotted in Fig. 7, show the LD 5 0

impact velocity for each species as a functiok of mean body weight and the

regression equation which best fits the data; namnely,

log Y = 1. 6 96 1 - 0.057Z log X

where

Y = impact velocity for 50 per cent mortality in ft/sec

X = mean body weight in grams

the intercept = 1.6961 and

the slope constant = -0.057

The standard error of the estinate was 0.04Z lo; units (9.7%).

This regression relationship may be used tentatively to predict

the impact velocity associated with 50 per cent r-ortality for other species

of animals. Solving the equation for an a.ni=al wei 1hing 70 kg (154 lbs)

yielded a figure of 20.Z ft/sec (17.8 mph) as the predicted LDs 0 impact

velocity.

b. Slopes of the mortality cu:Ves

It was of interest to explore the possible association between the

avera-e wei-,hts of the animals studied and tHe slopes of the probit re-ression
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equations de'3cribing the empirical relationship between impact velocity

and mortality. This wa3 done using the method of least square; and a

regression. equation derived. The equatica was:

lo- S = 0.966 + 0.15358 loga'--

where

S = slope of the regression equation

YL = the average body weight in grams

The standard error of the estimate was 0.017 log units (3.891%).

Solving this equation for an animal weighing 70 kg (154 ]bs)

yielded a predicted slope constant of 51.3. Graphic portrayal of the data

relating the re-ression equation, slope constan,.and average body wei-,ht

for mice, rats, guinea pi-s, and rabbits is presented in Fig. S along wita

the regression line and the extrapolation to an animal weighing 70 kg.

c. Derivation of regression equation. relating imeact velocity and
mortality for a 70 kg animal

Having a predicted slope constant and a predicted LDSO impact

velocity for a 70 kg animal made it a simple matter to substitute values in

the regression equation of the form

Y =afblogX

and determine the intercept, a, of a predicted regression equation for the

70 kg animal; e.g..

5 = a + 51.3log Z6.Z

a = 5--51.3log Z 6 .Z = -67.7538

Thus, it was possible to write for the 70 kg air-.mal the following equation:

Y = -67.76 + 51.3log X

where

Y = percent mortality in probit units

X = the irrpact velocity in ift/sec

The regression line for the above equation is shown dotted in on Fi-. 3 and
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allows one to visualize the predicted data along with the empirical firdings

for mice, rats, guinea pigs, and rabbits described prev-iously.

DISCUSSION

1. General

Strictly speaking, the daza reported above apply only to young adult

aninrals subjected to impact with a solid, flzt surface in the prone position.

Besides the innate biological variability mentioned years ago by Rushmer 1 8 - ZO

21and Rushrner et al. ! the experiments described here involve two other factors

which might spuriously influence the relationship between mortality and impact

velocity. The first concerns some variation in the position of the animals

when striking the concrete surface since the righting reflexes were employed

to maintain a feet-down position. The second concerns a possible modification

of the impact velocity by whatever resistance the legs of the animals offered

as energy absorbers to decrease the velocity of contact of the main mass of

the body. Viewing the many movies taken of impact, however, revealed that

in no observed instance was there much of a head- or tail-down position at

impact; also, there was no appreciable slowing down of the animal detectable

when velocities within the mortality range were reached.

Unfortunately, should a human be subjected to impact either involving

falls, vehicular accidents, ground shock imparted to blast protective sheltcr-s

or abrupt deceleration after displacement by blast winds, it is likely that con-

siderable variation in the body area of impact will occur. Also, there are

many circt;mstances in which a decelerative experience may involve glancing

contact with an object; too, a great variation in the shape, weight and consis-

tency of the decelerating object or surface may 1: involved. Any modification

of the time of deceleration and the distance over which it occurs will markedly

influence the magnitude of the G load and the rate with w'h;ich it develops. Such

factors are responsible for human survival after falls described in the well
11

known paper of DeHaven which concerned drop distances in three cases of

55. 93 and 145 ft. impact velocities ranging from about 60 to near 83 ft/sec.

and stopping distance of about 0.3 to 0. 7 ft occurring in a time period in the

vicinity of 0.01 to 0.0Z sec. Frequently, the surface struck is soft ground amid
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the impact area of the body is large -the back, side or ventral surface -and

these factors modify the relationships between impact velocity and biological

effect.

Though refinements in terms of stopping distance and time as they

influence G loading are important and have been wel discussed by Rushmer
ZO ZZ Z3 Z4 Zet al., DeHaven, Roth, Haddon and McFarland, Stapp,5 Goldman

Z6
and vcn Gierke and others, there is nonetheless a problem in the human

case - as noted in the Introduction -when impact with a flat, solid surface

occurs and the stopping times and distances are controlled only by the tissues

of the body itself. Ideally, one would like to know the relationship between

impact velocity and mortality, the threshold for mortality and the threshold

for tolerable trauma for the human case, all as functions of the different areas

of the body that may come in violent contact with hard surfaces. Fortunately,

there are a few relevant data on some aspects of this problem that are helpful.

first, in setting quantitative relationships for n-.n and second, in evaluating

the extrapolations set forth in the present study. The more important of these

now known to the authors will now be briefly noted.

Z. Literature Involvin; Human Material

a. Head
27Bl.ackt eta!.., ,e.,,, the records of British mine a-ccidents i-

1942, stated a skull fracture occurred from a probable fo-e- and -aft blow

of 15 ft/sec (equivalent to a 3-1/Z ft drop) from a striking mass of about 8 lb.

Zuck ern-.an and Black, using monkeys strapped against a heavy plate set in

sudden motion by the impact of a heavy pendulum. failed to produce signs of

concussion or fracture with "initial"I velocities of 10 ft/sec applied fore and

aft.

'9
Draeger et al. ran two tests on an p~act-shock test zt-achine

using cadavers lying face down and face up on the table at the time a rm-axc-nurn

blow from a striking ha.-mer produced an "initial" average velocity oi near

15 ft/sec. It was noted t&at no bone damage was produced for thle face-up con-

dition in contrast to the face-down instance wherein a linear fracture of the

vault oLf the skull in the occipital region was found.
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Gurdjian et al. 3 0 have pointed out. that dry skulls have been

fractured with e.ergies as little as Z5 ft Ibs (300 in. ros;, but that cadaver

heads with scalp and contents intact to "cushion" the blow required energies

of close to 400 to more than 900 in. Vbs to fracture. Important also is the

fact that 10 to 20 per cent additional energy over tihat required to produce a

single linear fracture almost completely demolished the skull shattering it

to fr tgments.

31
The same authors reported experiments from which the 400 -

900 in. lbs figures were derived and pointed out the impact velocities in-

volved wherx 46 intact human heads were dropped on a hard surface. These

ranged from one instance with fracture at 13.5 ft/sec to about Z3 ft/sec.

The data grouped according to impact velocities are shown in Table 9.

While the skull varies in its strength, being minimal for mid-

frontal blows and maximal for the anterior interparietal positions, and energy

at impact is the more precise means of assessing tolerance to abrupt decel-

eration, the tabulated distribution of impact velocities required for fracture

has great appeal for its simplicity. However, in assessing the data noted in

Table 9, it must be realized that impact with a 90 degree sharp corner may

require only 60 in. lbs of energy3 Z for skull fracture and that an individual

travelling horizontally and undergoing a head-on impact involves a sitination

different from the circumstances described above; e.g., the head then will

have to absorb not only its own energy of motion, but also that of the following

body as well; this also places considerable strain on t'e neck and cervical

spine.

The careful reader w-il realize that notning yet has been said a*:out

cerebral concussion. Indeed, it is true that concussion nay well be a more

dangerous lesion t:-an skull fracture; too, it can occur in the absence of frac-

ture of the cranial vault. It is unfortunate t:hat no sir.ificant amount of quan-

titative ,-unan data are available for concussion Z 4 thougn Lissner and Evans3 3

have st.red that if t-e energ-y to be dissipated by L,pact loading of the skll is

kept below 400 in. nbs (33 ft Ibs), they feel neiL-er severe concussion nor

i.-tc-ue will result. In ter:-s of a 10 b rn-ass, near the averaze weight of the

adu, "d---n ".ead. t$is is equivalent to A droo fro-, a hei; .t of 40 in. a.d an
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Table 9

THE RANGE OF LMPACT VELOCITIES ASSOCIATED WITH EXPERLMENTAL

SKULL FRACTURE OF THE SKULLS OF INTACT HUMAN HEADS

(After Gurdjian et al.. ( 3 1))

Range Approx. Approx. Number of fractures
impact velocity height

velocities in of fall of in accumulative
ft/sec mph ft Heads per cent per cent

13.5 - 14.9 9.5 37 9 19 19
15 - 16.9 10.9 48 10 22 41

17 - 18.9 12.2 61 1z 26 67

19 - 20.9 13.6 75 13 24 91

ZI - Z2.9 15.0 91 4 9 100

Totals 46 100

Minimurn velocity with. fracture - 13.5 ft/sec (9. Z mph)

Maximum velocity with fracture - 22.8 ft/sec (15.5 mph)

Maximum and minimum velocity without fracture - unstated
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impact 7elocity of 14. 7 ftlsec. Tia £g-e is ',uell above the British expc-

ience of Zuckenman and Black with rnonkceys, <uoted above, noting that
10 ft/sec prodaced no signs of concussion or fracture.

Last, with regard to the head problem, no data are at hand for

irfants, children and adolescents at one end of the age scale nor those in the

last decades of life at the other as pointed out by Haddon and McFarland Z 4

in a competent general review of the present knowledge concerning head

injury. However, for adults the consistency between the British and Arnrcan

data placing the threshold for skull fracture at near 13 ft/sec ;aJows one to

feel fairly confident that an impact velocity with a hard, flat sntrface of 10

ft/sec should prore to be an acceptable impact velocity for the head of adult
_Z3man which opinion is compatible with findings attributed to &Lombard

namely, that helmeted subjects voluntarily tclerated blows to thft helmet,

involving velocities from about I L - 14 ft/sec. Suh blows involved an accel-

eration distance of near 0. L ft, force application time close to 17 mnsec ard

a maximum G load of from 15 to 35 G.

b. Lower extremity

Casualty experience during the second World War included many

instances of the very serious fracture of the calcaneus (heel bone), other

br-aes Of tfhel'u-C, 'Legs." ...... .L d skUl WdCI ....... ':K C;Ause5Cd by C X z'w", , 3 Of

bonbs, mines, or torpedoes below the decks of or near vessels. 3 4 , 35 Such

observations stimulated laboratory investigations on the lower extremnity of

intact cadavers.

Z7
In Great Britain. Black. Christopherson. and Zuckermnan re-

ported experiments in 1947 using two embalmed cadawers. With the kr.ees

locked and with the bottoms of the feet made parallel with the floor, using

wooden blocks, one of the cadavers was dropped to the dec-k from heights of

0.5. 1.O, Z.0, and 4.0 ft. Only the latter drop produced boney pathology-

a complete fracture of the heel bones bilaterally with a "chip fracture" in

the posterior surface of each. The impact velocities at 2 and 4 it were about

11 and 16 ft/sec, respectively, and the authors concluded that an initial

velocity within these limits might well mark the fracture threshold for bare-

footed individuals.
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The second cadaver was fitted with "specially devised boots which

had sponge-rubber pad-s on the inside of strong rubber heelsr'. After a drop

of 3 ft (near 13.9 ft/sec impact velocity) fracture of the left talus bone was

noted (the talus lies above the calcaneus, or heel bone, z.nd separates the

latter from the two bones of the lower leg at the ankle). After drops from

6 ft (19.6 ft/sec) additional fractures were noted; eg., inner rnargins of the

lower end of the left tibia; the outer and inner condyle of the upper end of the

left tibia, and the whole upper end of the right tibia.

In 1945 Draeger et al. 9 described experiments with four em-

balmed cadavers and human volunteers u.sing a high impact test machine, the

4, 000 lb table of which was energized by an upward blow of a 3.000 lb hammer

allowed to swing in an arc fromdifferent heights. Fractures were produced

in two of the cadavers under circumstances for one covered by high speed

photography. The impact velocities withstood by human volunteers was not

stated.

The photographic records revealed the data noted in Table 10 show-

ing the movement of the table on which the cadaver was standing with knees

locked and the average velocities of the table and a metal bar piercing the tibia

just above the ankle of the subject, both given as a function of time. Fractures

of the os calcis (calcaneus) occurred and the reader will note that over the

first 5 msec the velocity figures given in the next to last column of Table 10,

obtained by step-by-step calculations for table movement, ranged from iZ. 9

to Z1.4 ftlsec. Thee numbers are reasonably close to the British figures

which placed the 'Initial velocity" threshold for fracture of the heel bone be-

tween 11 and 16 Jtlsec.

Though there is much food for thought in the work of Draeger et al.,

in the interest of simplicity it is well to emphasize that impact velocities much

above 11 - 12 ft/sec can cau-se fracture. In relation to these data for fractures,

it is appropriate now to direct attention to recent work with human volunteers

which goes to the point of voluntary tolerance to vertical loads applied to the

feet of standing human volunteers.

Swearingen et a23 6 have reported narly 500 experi nents with 13
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Table 10

IMPACT TABLE MOVEMENT AT DIFFERENT TIES AND THE AVERAGE

VELOCITIES OF THE TABLE TOP AND THE TIBIA OF A CADAVER

EXPOSED STANDING WITH KNEES LOCKED

(After Draeger et al.k(9))

Displacement Time Average velocity_ in ft/ sec
of table Table top Tibia

in. rnsec

0 -O.Z5 0 -1.62 Z.9 9.8

0.25-0.60 1.62-3.Z5 16.9 10.1

0.60-1.50 3.25-5.0 21.4 16.2

1.05-1.09 5.0 -6.5 Z. z -5.0

1.09-1.33 6.5 -8.2 11.8 9.8

1.33-1.73 8.Z -10.0 18.5 18.1

0 -Z.48 0 -15 13.7 10. z s u- vecutrve



adults subjected to drop tests in a track-guided chair t-avelling verticalll

downward to impact against a platfor a. The n'.o-verer.te of the latter was

damped with heavy leaf springs and hydraulic pistons. Though the base

platform was capable of a maxir'nal -ovem.ent of I im., the actual movernent

at impact was known to be small, but nat stated. However. G-tirne record-

ings were made when standing individuals with knees locked were subjected

to drops from a maximal height of Z ft.* The theoretical impact velocity

connected with this fall height is 11.3 ft/sec. Integration of the G-tirne curve

recorded and reported- which showed a maximum G of 65 developing at

10,000 G/sec with impact enduring for 8 msec - gave a calculated impact

velocity of 9.9 ft/sec. This figure is within about IZ per cent of the theo-

retical figure.

The loading associated with about 10 ft/sec impact velocity was

the maximal tolerated by the human subjects. Severe pain was noted in the

chest, epigastrum, lower back, hip joints, and top of the head. Also, pain

was reported in the arches of the feet, back of the legs, ankles, heels, and

throat.

C.

In similar experiments with seated subjects, Swearingen and co-
36

workers deter-mined the lmit of voluntary tolerance to be associ'ated w ith a

maximal load of 95 G developing at 19, 000 G/sec over a time period of 7.5

msec; the impact velocity calculated from the G-time curves was 9.7 ft/sec.

Severe pain in the chest, spine, head, and stomach was noted and "Shock:

severe, general" was reported.

There is little point in reviewing the many ejection seat data con-

sidered safe and unsafe by various investigators. Let it suffice to say that

they are not inconsistent with the findings of Swearingen et al.. that Ruff 3 7

estimated fractures of the spine could occur at about 100 G when the time

involved was as short as Z msec, and that Gagge a-d Sh.aw 3 3 have stated

application of Z0 G developing at the rate of 150 G/sec and enduring for ZOO

msec was acceptable for pilots using ejection seats for escApe frorm aircrait

*Swearingen. J. J., perso.-Al co umcaon.
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ard that Watts et al. 9 reported 20 G for 0.08 sec applied at the rate of Z0

G/sec prodaced no symptoms in 50 volunteer naval subjects.

d. Automobile accidents

Finally, it is of considerable interest to note National Safety

Council statistics quoted by DeHaven relevant to fatalities in urban auto-

mobile accidents. The figures show that '40 per cent of automobile fatalities

in urban areas involved a speed of 20 mph or less and 70 per cent were attri-

buted to accidents in which the speed did not exceed 30 mph." This would

place the 50 per cent mortality figure near Z3 mph (33.8 ft/sec). It is neces-

sary to point out, however, that this velocity apparently refers to the speed

at which a crash occurred and may or may not refer to actual velocity at which

a fatally injured person struck a solid surface.

3. Present Stua,

a. General

Obviously what has been assembled from the literature both for the

human and the animal case, along with the present interspecies study, indi-

cates that the "state of the art" for understanding the biology of decelerative

impact is not very far advanced. Much more quantitative information is needed

to establish tolerance for various organs and regions of the body, particularly

in the case of the friable liver and spleen and the other abdominal organs. Like-

wise, additional, data are desired for the thorax and its organs, for the head

and its contents, and for the cervical spine. Be this as it may, a few comments

are in order concerning the experiments reported here and their relation to the

literature reviewed. These will now be presented.

b. F-xtrapoloation of the LDso impact velo.ty data

Though it is hardly possible to imagine what precise xv-se might be

made of the described interspecies extrapolation of the LD50 impact velocity

to give a figure of Z6 ft/sec (t8 mph) for the 70 kg animal, it is none the less

quite interestig that the data for human fatalities in automobile statistics

show a 50 per ce-t mortality at vehicular speeds near 33.8 ft/sec (23 mph).

Thus. the ani-al ex--rapolation of the 50 per cent impact velocity is ZZ. 5 per



cent lower than the vehicular speeds associated with 50 per cent atalities.

While this apparent correspondence may be more fortuitous than real ard

a number of grave uncertainties are no doubt involved, it could also represent

more than an accidental array of factors. At least, the situation is sufficiently

encouraging to suggest a nunber of worth while contingencies. First, addi-

tional and somewhat similar animal studies are justified; second, all efforts

to collect relevant data referable to the human case from past experience and

in the futureare indicated; third, the extrapolation to the 70 kg animal can be

tentatively regarded as applying "on the average" to man (a) for the purposes

of testing such a hypothesis, and (b) for use under certain circumstances be-

cause nothing better seems to be at hand.

c. The regression equation for the 70 kg animal and the threshold
for mortality and injury concept

The regression equation for the 70 kg animal- arrived at by extrap-

olation and predicting the relationship between impact velocity and mortality -

is of interest, for with its use one can explore the mortality threshold situa-

tion for the 70 kg animal as well as for the four species empirically studied.

Assigning zero to Y in the probit regression equations and solving them for

X. yields figures for impact velocities predicted to be near the threshold for

mortality. Doing this simple calculation gave the figures set forth in Table

11.

Two things are significant about the tabulated data in Table 11.

1'rst, there is very little difference in the threshold impact velocities for all

species and for the 70 kg animal, suggesting there may be a common mecian-

ism that is critical for mortality. Second, the impact-velocity numbers are

higher than those known to be associated with quite dangerous, perhaps fatal,

lesions in man, such as the range in impact velocities for human skull frac-

ture from 13.5 to 73 ft/sec (9.Z - 15.6 mph) reported by Gurdjian et al.3

Third, the predicted impact velocities for the threshold of mortality are well

above the impact velocity of about 10 ft/sec voluntarily tolerated by standing
36

and seated human subjects studied by Swearingen. Fourth, the general con-

sistency of the inforrmnation just noted above suggests one can tentatively take
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Table 11

PREDICTED IMPACT VELOCITY AT
THRESHOLD OF MORTALITY

Predicted impact velocity at
Animal mortality threshold
Species ft/sec mph

Mouse LS. Z IZ.8

Rat Z4.0 16.3

Guinea pig 19.9 13.5

Rabbit U1. 8 14.8
70 kg animal ZG.8 14. L
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10 ft/sec as "an-on-the-average safe" impact velocity for adult humnans and

regard the probabilities of serious injury and even fatality for man to in-

crease progressively as the impact velocity is elevated above this figure.

d. Time of death

It iswell to reemphasize again the short time to death observed in

the 200 untreated animals dying of impact in relation to the high mortality

figures associated with vehicular accidents which reoccur on an annual basis.

How many of the animals dying in the present study could have been saved by

therapeutic measures is, of course, not known, but there are many human

accident victims alive today because medical care was appropriate both in

kind and in time. The rapidity with which the experimental animals expired

makes it impossible to resist suggesting that one possible way to reduce

fatalities in vehicular accidents would be to explore and implement all arrange-

ments that would assure the earliest possible medical care.

e. Cause of death

Finnaly, the inquisitive reader can wel ponder along with the authors

the several possible pathophysiological mechanisms responsible for death of

the animals studied. Currently, it is not possible to present relevant data;

neither may it be possible to do so in the future. However, gross pathological

observations were made on the animnals who died spontaneously and who were

sacrificed after impact. It remains for further studies to reveal whether the

gross data are adequate or inadequate to the challenge of throwing more light

on the etiology of death by violent impact.
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